DATA SHEET

SA630
 Single pole double throw (SPDT) switch

Product Specification
Replaces data of October 10, 1991
IC17 Data Handbook

DESCRIPTION

The SA630 is a wideband RF switch fabricated in BiCMOS technology and incorporating on-chip CMOS/TTL compatible drivers. Its primary function is to switch signals in the frequency range DC 1 GHz from one 50Ω channel to another. The switch is activated by a CMOS/TTL compatible signal applied to the enable channel 1 pin (ENCH1).

The extremely low current consumption makes the SA630 ideal for portable applications. The excellent isolation and low loss makes this a suitable replacement for PIN diodes.
The SA630 is available in an 8-pin dual in-line plastic package and an 8 -pin SO (surface mounted miniature) package.

FEATURES

-Wideband (DC - 1GHz)

- Low through loss (1dB typical at 200MHz)
- Unused input is terminated internally in 50Ω
- Excellent overload capability (1 dB gain compression point +18 dBm at 300 MHz)
- Low DC power ($170 \mu \mathrm{~A}$ from 5V supply)
- Fast switching (20ns typical)
\bullet Good isolation (off channel isolation 60 dB at 100 MHz)

PIN CONFIGURATION

SR00578
Figure 1. Pin Configuration

- Low distortion (IP_{3} intercept +33 dBm)
\bullet Good 50Ω match (return loss 18 dB at 400 MHz)
- Full ESD protection
- Bidirectional operation

APPLICATIONS

- Digital transceiver front-end switch
- Antenna switch
- Filter selection
- Video switch
- FSK transmitter

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG \#
8-Pin Plastic Dual In-Line Package (DIP)	-40 to $+85^{\circ} \mathrm{C}$	SA630N	SOT97-1
8-Pin Plastic Small Outline (SO) package (Surface-mount)	-40 to $+85^{\circ} \mathrm{C}$	SA630D	SOT96-1

BLOCK DIAGRAM

Figure 2. Block Diagram

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	RATING	UNITS
V_{DD}	Supply voltage	3.0 to 5.5 V	V
$\mathrm{~T}_{\mathrm{A}}$	Operating ambient temperature range SA Grade	-40 to +85	${ }^{\circ} \mathrm{C}$
T_{J}	Operating junction temperature range SA Grade	-40 to +105	${ }^{\circ} \mathrm{C}$

EQUIVALENT CIRCUIT

Figure 3. Equivalent Circuit

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNITS
V_{DD}	Supply voltage	-0.5 to +5.5	V
	Power dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (still air) ${ }^{1}$ 8-Pin Plastic DIP 8-Pin Plastic SO	1160	
P_{D}	Maximum operating junction temperature	780	mW
	$\mathrm{~T}_{\text {JMAX }}$	mW	
$\mathrm{P}_{\text {MAX }}$	Maximum power input/output	150	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {STG }}$	Storage temperature range	-20	dBm

NOTES:

1. Maximum dissipation is determined by the operating ambient temperature and the thermal resistance, θ_{JA} :

$$
\text { 8-Pin DIP: } \theta_{J A}=108^{\circ} \mathrm{C} / \mathrm{W}
$$

$$
8 \text {-Pin SO: } \theta_{\mathrm{JA}}=158^{\circ} \mathrm{C} / \mathrm{W}
$$

DC ELECTRICAL CHARACTERISTICS

$V_{D D}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA630			
			MIN	TYP	MAX	
IDD	Supply current		40	170	300	$\mu \mathrm{A}$
V_{T}	TTL/CMOS logic threshold voltage ${ }^{1}$		1.1	1.25	1.4	V
V_{IH}	Logic 1 level	Enable channel 1	2.0		V_{DD}	V
V_{IL}	Logic 0 level	Enable channel 2	-0.3		0.8	V
IIL	ENCH1 input current	ENCH1 $=0.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$
$\mathrm{IIH}^{\text {H }}$	ENCH1 input current	ENCH1 $=2.4 \mathrm{~V}$	-1	0	1	$\mu \mathrm{A}$

NOTE:

1. The ENCH1 input must be connected to a valid Logic Level for proper operation of the SA630.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ - D PACKAGE

$V_{D D}=+5 \mathrm{~V}, T_{A}=25^{\circ} \mathrm{C}$; unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	LIMITS			UNITS
			SA630			
			MIN	TYP	MAX	
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Insertion loss (ON channel)	$\begin{gathered} \hline \text { DC }-100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		1 1.4 2	2.8	dB
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Isolation (OFF channel) ${ }^{2}$	$\begin{gathered} \hline 10 \mathrm{MHz} \\ 100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$	$\begin{aligned} & 70 \\ & 24 \end{aligned}$	$\begin{aligned} & 80 \\ & 60 \\ & 50 \\ & 30 \end{aligned}$		dB
$\mathrm{S}_{11}, \mathrm{~S}_{22}$	Return loss (ON channel)	$\begin{gathered} \text { DC }-400 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		$\begin{aligned} & 20 \\ & 12 \end{aligned}$		dB
$\mathrm{S}_{11}, \mathrm{~S}_{22}$	Return loss (OFF channel)	$\begin{gathered} \text { DC }-400 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		$\begin{aligned} & 17 \\ & 13 \end{aligned}$		dB
t_{D}	Switching speed (on-off delay)	50\% TTL to 90/10\% RF		20		ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Switching speeds (on-off rise/fall time)	90\%/10\% to 10\%/90\% RF		5		ns
	Switching transients			165		$\mathrm{mV}_{\mathrm{P}-\mathrm{P}}$
$\mathrm{P}_{-1 \mathrm{~dB}}$	1dB gain compression	DC - 1GHz		+18		dBm
IP_{3}	Third-order intermodulation intercept	100 MHz		+33		dBm
IP_{2}	Second-order intermodulation intercept	100 MHz		+52		dBm
NF	Noise figure ($Z_{O}=50 \Omega$)	$\begin{aligned} & \hline 100 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 2.0 \\ & \hline \end{aligned}$		dB

NOTE:

1. All measurements include the effects of the D package SA630 Evaluation Board (see Figure 4B). Measurement system impedance is 50Ω.
2. The placement of the AC bypass capacitor is critical to achieve these specifications. See the applications section for more details.

AC ELECTRICAL CHARACTERISTICS ${ }^{1}$ - N PACKAGE

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$; all other characteristics similar to the D-Package, unless otherwise stated.

SYMBOL	PARAMETER	TEST CONDITIONS	$\begin{aligned} & \hline \text { LIMITS } \\ & \hline \text { SA630 } \end{aligned}$			UNITS
			MIN	TYP	MAX	
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Insertion loss (ON channel)	$\begin{gathered} \hline \text { DC }-100 \mathrm{MHz} \\ 500 \mathrm{MHz} \\ 900 \mathrm{MHz} \end{gathered}$		1 1.4 2.5		dB
$\mathrm{S}_{21}, \mathrm{~S}_{12}$	Isolation (OFF channel)	$\begin{aligned} & \hline 10 \mathrm{MHz} \\ & 100 \mathrm{MHz} \\ & 500 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$	58	68 50 37 15		dB
NF	Noise figure ($\mathrm{Z}_{\mathrm{O}}=50 \Omega$)	$\begin{aligned} & \hline 100 \mathrm{MHz} \\ & 900 \mathrm{MHz} \end{aligned}$		1.0 2.5		dB

NOTE:

1. All measurements include the effects of the N package SA630 Evaluation Board (see Figure 4C). Measurement system impedance is 50Ω.

APPLICATIONS

The typical applications schematic and printed circuit board layout of the SA630 evaluation board is shown in Figure 4. The layout of the board is simple, but a few cautions need to be observed. The input and output traces should be 50Ω. The placement of the AC bypass capacitor is extremely critical if a symmetric isolation between the two channels is desired. The trace from Pin 7 should be drawn back towards the package and then be routed downwards. The capacitor
should be placed straight down as close to the device as practical.
For better isolation between the two channels at higher frequencies, it is also advisable to run the two output/input traces at an angle. This also minimizes any inductive coupling between the two traces. The power supply bypass capacitor should be placed close to the device. Figure 10 shows the frequency response of the SA630. The loss matching between the two channels is excellent to 1.2 GHz as shown in Figure 13.

a. Evaluation Board Schematic

b. 630 D-Package Board Layout

Figure 4. Board and Package Graphics

The isolation and matching of the two channels over frequency is shown in Figures 15 and 17, respectively.
The SA630 is a very versatile part and can be used in many applications. Figure 5 shows a block diagram of a typical Digital RF transceiver front-end. In this application the SA630 replaces the duplexer which is typically very bulky and lossy. Due to the low power consumption of the device, it is ideally suited for handheld applications such as in CT2 cordless telephones. The SA630 can also be used to generate Amplitude Shift Keying (ASK) or On-Off Keying (OOK) and Frequency Shift Keying (FSK) signals for digital RF communications systems. Block diagrams for these applications are shown in Figures 6 and 7, respectively.
For applications that require a higher isolation at 1 GHz than obtained from a single SA630, several SA630s can be cascaded as
shown in Figure 8. The cascaded configuration will have a higher loss but greater than 35 dB of isolation at 1 GHz and greater than $65 \mathrm{~dB} @ 500 \mathrm{MHz}$ can be obtained from this configuration. By modifying the enable control, an RF multiplexer/ de-multiplexer or antenna selector can be constructed. The simplicity of SA630 coupled with its ease of use and high performance lends itself to many innovative applications.
The SA630 switch terminates the OFF channel in 50Ω. The 50Ω resistor is internal and is in series with the external AC bypass capacitor. Matching to impedances other than 50Ω can be achieved by adding a resistor in series with the AC bypass capacitor (e.g., 25Ω additional to match to a 75Ω environment).

SR00582
Figure 5. A Typical TDMA/Digital RF Transceiver System Front-End

Figure 6. Amplitude Shift Keying (ASK) Generator

Figure 8.

Figure 7. Frequency Shift Keying (FSK) Gnerator

Figure 9. Supply Current vs. V_{DD} and Temperature

Figure 10. Loss vs. Frequency and $V_{D D}$ for D-Package

Figure 11. Loss vs. Frequency and V_{DD} for D-Package-Expanded Detail-

Figure 12. Loss Matching vs. Frequency for N-Package (DIP)

Figure 13. Loss Matching vs. Frequency; CH1 vs. CH 2 for D-Pakage

Figure 14. Loss vs. Frequency and Temperature for D-Package

Figure 15. Isolation vs. Frequency and V_{DD} for D-Package

Figure 16. Isolation Matching vs. Frequency for N-Package (DIP)

Figure 17. Isolation Matching vs. Frequency; CH1 vs. CH 2 for D-Package

Figure 18. Input Match On-Channel vs. Frequency and $V_{D D}$

Figure 19. Output Match On-Channel vs. Frequency

Figure 20. OFF-Channel Match vs. Frequency and V_{DD}

Figure 21. OFF Channel Match vs. Frequency and Temperature

Figure 22. $\mathrm{P}_{-1} \mathrm{~dB}$ vs. Frequency and V_{DD}

Figure 23. Intercept Points vs. V_{DD}

Figure 24. Noise Figure vs. Frequency and $V_{D D}$ for D-Package

Figure 25. Switching Speed; $\mathrm{f}_{\mathrm{IN}}=100 \mathrm{MHz}$ at $-6 \mathrm{dBm}, \mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	$\begin{gathered} \mathrm{A} \\ \text { max. } \end{gathered}$	A_{1}	A_{2}	A_{3}	b_{p}	c	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	v	w	y	$z^{(1)}$	θ
mm	1.75	$\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$	0.25	$\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 5.0 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$	1.27	$\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$	1.05	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$	0.25	0.25	0.1	0.7 0.3	$\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$
inches	0.069	$\begin{array}{l\|} \hline 0.0098 \\ 0.0039 \end{array}$	$\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$	0.01	$\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$	$\begin{aligned} & 0.0098 \\ & 0.0075 \end{aligned}$	$\begin{aligned} & \hline 0.20 \\ & 0.19 \end{aligned}$	$\begin{aligned} & \hline 0.16 \\ & 0.15 \end{aligned}$	0.050	$\begin{aligned} & 0.24 \\ & 0.23 \end{aligned}$	0.041	$\begin{aligned} & \hline 0.039 \\ & 0.016 \end{aligned}$	$\begin{aligned} & \hline 0.028 \\ & 0.024 \end{aligned}$	0.01	0.01	0.004	$\begin{aligned} & \hline 0.028 \\ & 0.012 \end{aligned}$	

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION
	IEC	JEDEC	EIAJ		
SOT96-1	$076 E 03 S$	MS-012AA			$-92-11-17$

DIMENSIONS (inch dimensions are derived from the original mm dimensions)

UNIT	\mathbf{A} max.	\mathbf{A}_{1} min.	$\mathbf{A}_{\mathbf{2}}$ max.	\mathbf{b}	$\mathbf{b}_{\mathbf{1}}$	$\mathbf{b}_{\mathbf{2}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{M}_{\mathbf{E}}$	$\mathbf{M}_{\mathbf{H}}$	\mathbf{w}
mm	4.2	0.51	3.2	1.73	0.53 $\mathbf{Z}^{(1)}$ $\mathbf{m a x}$										
inches	0.17	0.14	0.38	1.07	0.89	0.36	9.8 9.23	6.48 6.20	2.54	7.62	3.60 3.05	8.25 7.80	10.0 8.3	0.254	1.15

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	SOT97-1	050 G 01	JEDEC	EIAJ		

DEFINITIONS

Data Sheet Identification	Product Status	Definition
Objective Specification	Formative or in Design	This data sheet contains the design target or goal specifications for product development. Specifications may change in any manner without notice.
Preliminary Specification	Preproduction Product	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.
Product Specification	Full Production	This data sheet contains Final Specifications. Philips Semiconductors reserves the right to make changes at any time without notice, in order to improve design and supply the best possible product.

Philips Semiconductors and Philips Electronics North America Corporation reserve the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified. Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

LIFE SUPPORT APPLICATIONS

Philips Semiconductors and Philips Electronics North America Corporation Products are not designed for use in life support appliances, devices, or systems where malfunction of a Philips Semiconductors and Philips Electronics North America Corporation Product can reasonably be expected to result in a personal injury. Philips Semiconductors and Philips Electronics North America Corporation customers using or selling Philips Semiconductors and Philips Electronics North America Corporation Products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors and Philips Electronics North America Corporation for any damages resulting from such improper use or sale.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

PHILIPS

